Dirhenium Polyhydrides That Contain Bidentate Chelating and/or Bridging Phosphine Ligands

Karen E. Meyer, Dawn R. Root, Phillip E. Fanwick, and Richard A. Walton'

Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393

Received March *3, 1992*

The dirhenium octahydride complex $Re_2H_8(dppe)$ (dppe = Ph₂PCH₂CH₂PPh₂) reacts with 2 equiv of dppe in methanol to give Re₂H₄(dppe)₃. This complex displays ¹H and ³¹P{¹H} NMR spectra which are consistent with its possessing the unsymmetrical structure $(dppe)_2Re(\mu-H)_2ReH_2(dppe)$, in which all three dppe ligands are chelating. The conversion of $Re_2H_4(dppe)_3$ to its conjugate acid $[Re_2H_3(dppe)_3]BF_4$ was accomplished upon its treatment with HBF₄.Et₂O in CH₂Cl₂. The structure of the dirhenium cation $[Re_2H_5(dppe)_3]^+$ was established by NMR spectroscopy and a crystal structure determination on the salt [Re₂H₅(dppe)₃]ReO₄ (1), which was isolated, along with $[ReO_2(dppe)_2]ReO_4$ (2), during an unsuccessful attempt to grow single crystals of the octahydride Re_2H_8 -(dppe)₂. Crystal data for $1 (+21 °C)$: monoclinic space group $P2_1/n$ (No. 14), $a = 12.177$ (1) Å, $b = 23.152$ (2) \AA , $c = 26.843$ (4) \AA , $\beta = 100.32$ (1)^o, $V = 7445$ (3) \AA^3 , and $Z = 4$. The structure, which was refined to $R = 0.048$ $(R_w = 0.060)$ for 5923 data with $I > 3.0\sigma(I)$, reveals the presence of one intramolecular bridging and two inequivalent chelating dppe ligands, in accord with the structure representation $[(dppe)HRe(\mu-H)_3(\mu-dppe)ReH(dpbe)]^+$. The Re-Re bond length is 2.576 (1) Å. Crystal data for $2 (+21 °C)$: monoclinic space group $P2_1/n$ (No. 14), $a = 9.805$ (2) \hat{A} , $b = 14.500$ (3) \hat{A} , $c = 17.572$ (4) \hat{A} , $\beta = 92.89$ (2)^o, $V = 2495$ (2) \hat{A}^3 , and $Z = 2$. The structure was refined to $R = 0.067$ ($R_w = 0.086$) for 2790 data with $I > 3.0\sigma(I)$; it contains the centrosymmetric trans-[ReO₂(dppe)₂]⁺ cation. Several other complexes that are related to $Re_2H_4(dppe)_3$ and $[Re_2H_5(dppe)_3]^+$ have been isolated in which mixed-phosphine ligand sets are present. These are of compositions $Re_2H_4(dppe)_2(dppm)$, $[Re_2H_5(dppe)_2(dppm)]$ - BF_4 , $Re_2H_4(PMe_3)$ ₄(dppe), $[Re_2H_5(PMe_3)$ ₄(dppe)]X $(X^-= BF_4^-$, $PF_6^-)$, and $[Re_2H_5(PMe_3)$ ₄(dppm)]PF₆, where $\text{dppm} = \text{Ph}_2\text{PCH}_2\text{PPh}_2$. The mixed dppe-dppm complexes are believed to have the structures (dppe)Re(μ -H)₃-(μ -dppm)ReH(dppe) and [(dppe)HRe(μ -H)₃(μ -dppm)ReH(dppe)]⁺, respectively, on the basis of an analysis of their H and $31P\{HH\}$ NMR spectra. The structures of the mixed PMe₃-dppe and PMe₃-dppm complexes are less certain. The complex cation $[Re_2H_3(dmpm)_3]^+$ (dmpm = Me₂PCH₂PMe₂), which has been prepared by two different procedures, is quite different structurally from $[Re_2H_5(dppe)_2(LL)]^+$ (LL = dppe, dppm). The reaction of Re₂- $Cl_4(\mu$ -dmpm)₃ with LiAlH₄ in THF, followed by treatment of the reaction product with KPF₆ in water, affords the complex $[Re_2H_3(dmpm)_3]PF_6$ (3), while the analogous BF_4^- salt is prepared from the reaction between Re_2H_8 -(dmpm)₂, dmpm, and HBF₄.Et₂O. Crystal data for 3 at -100 °C: monoclinic space group $P2_1/n$ (No. 14), $a =$ 9.288 (1) \hat{A} , $b = 24.515$ (3) \hat{A} , $c = 13.761$ (3) \hat{A} , $\beta = 93.23$ (1)^o, $V = 3128$ (1) \hat{A}^3 , and $Z = 4$. The structure was refined to $R = 0.030$ ($R_w = 0.039$) for 4476 data with $I > 3\sigma(I)$. The cation has the solid-state structure [H₂- $Re(\mu-H)(\mu-dmpm)_3ReH_2$ ⁺, in which the only Re-Re interaction is through a 3-center, 2-electron bond; the Re-Re distance is 3.5150 (4) **A.** This molecule has a degree of electronic unsaturation remarkable for a polyhydride complex of a heavier transition element.

where PR_3 represents a monodentate phosphine ligand, have attracted interest recently in several series of studies aimed at developing useful synthetic strategies, elucidating the structures However, there are only two examples of complexes in which of these compounds, and exploring their chemical reactivities.¹⁻²⁰ dmpm)₂ (dmpm = Me₂PCH₂PMe₂), as well as the results of

- **(2)** (a) Green, M. A.; Huffman, J. C.; Caulton, K. G. *J. Am. Chem. SOC.* **1981, 103, 695.** (b) Roberts, D. A.; Geoffroy, G. L. *J. Organomer. Chem.* **1981, 214, 221.**
-
- **(3)** Brant, P.; Walton, R. A. *Inorg. Chem.* **1978,** *17,* **2674. (4)** Bruno, J. W.; Caulton, K. G. J. *Orgonomet. Chem.* **1986, 315, C13.**
- **(5)** Lyons, D.; Wilkinson, G. *J. Chem. SOC., Dalron Tram.* **1985, 587.**
- **(6)** Fanwick, P. E.; Root, D. R.; Walton, R. A. *Inorg. Chem.* **1989,28,395.**
- **(7)** Fanwick, P. E.; Root, D. R.; Walton, R. A. *Inorg. Chem.* **1989,28,3203.**
- **(8)** Costello, M. T.; Moehring, G. A.; Walton, R. A. *Inorg. Chem.* **1990, 29, 1578.**
- **(9)** Bau, R.; Carroll, W. E.; Teller, R. G.; Koetzle, T. F. *J. Am. Chem. SOC.* **1971,99, 3872.**
- (10) Cotton, F. A.; Luck, R. L. *Inorg. Chem.* **1989, 28, 4522.**
- (11) Cotton, F. A.; Luck, R. L.; Root, D. R.; Walton. R. A. *Inora. Chem.* **1990, 29,43.**
- **(12)** (a) Allison, J. D.; Walton, R. A. *J. Chem. SOC., Chem. Commun.* **1983, 401.** (bl Allison. J. **D.:** Walton, R. A. *J. Am. Chem. SOC.* **1984. 106,** .. **163.**
- **1861.** (13) Moehring, G. A.; Fanwick, P. E.; Walton, R. A. *Inorg. Chem.* **1987,26,**
- **(14)** Root, D. R.; Meyer, **K.** E.; Walton, R. A. Inorg. *Chem.* **1989,28,2503.**

Introduction bidentate phosphines are present, namely, Re₂H₈(μ **-dppm)₂(dppm)** $= Ph_2PCH_2PPh_2$), in which the dppm ligands bridge the two $= Ph_2PCH_2PPh_2$, in which the dppm ligands bridge the two metal centers, and Re₂H₈(dppe)₂ (dppe = Ph₂PCH₂CH₂PPh₂) bidentate phosphines are present, namely, $Re_2H_8(\mu$ -dppm)₂ (dppm
= $Ph_2PCH_2PPh_2$), in which the dppm ligands bridge the two
metal centers, and $Re_2H_8(dppe)_2$ (dppe = $Ph_2PCH_2CH_2PPh_2$), metal centers, and $Re₂H₈(dppe)₂$ (dppe = $Ph₂PCR₂CH₂eph₂$), wherein which each of the dppe ligands chelates a metal center.^{6.7} We now describe the isolation of a third such example, $Re₂H₈(\mu$ studies that examine the chemical reactivity of these three compounds. The crystal structures of three chemical products are reported, viz., $[Re₂H₅(dppe)₃]ReO₄, [Re₂H₅(dmpm)₃]PF₆, and$ $[ReO₂(dppe)₂]ReO₄$. A few of these results have been described previously in communication form.21

- **(15)** Costello, M. T.; Fanwick, P. E.; Meyer, K. E.; Walton, R. A. *Inorg. Chem.* **1990, 29,4437.**
- **(16)** Allison, J. D.; Cotton, F. A.; Powell, G. L.; Walton, R. A. *Inorg. Chem.* **1984, 23, 159.**
- **(17)** Rhodes, **L.** F.; Huffman, J. C.;Caulton. K. G.J. *Am. Chem. Soc.* **1983, 105, 5137.**
- **(18)** Mueting, A. M.; Bos, W.; Alexander, B. D.; Boyle, P. D.; Casalnuovo, J. A.; Balaban, S.; Ito, L. N.; Johnson, S. M.; Pignolet, L. H. New J. *Chem.* **1988, 12, 505.**
- (19) Westerberg, D. E.; Sutherland, B. R.; Huffman, J. C.; Caulton, K. G.
J. Am. Chem. Soc. 1988, 110, 1642.
(20) Green, M. A.; Huffman, J. C.; Caulton, K. G. J. Am. Chem. Soc. 1982,
- **104, 2319.**
- **(21)** (a) Fanwick, P. E.; Root, D. R.; Walton, R. A. *Inorg. Chem.* **1989,28, 2239.** (b) Meyer, K. E.; Fanwick, P. E.; Walton, R. A. *J. Am. Chem. SOC.* **1990, 112, 8586.**

⁽¹⁾ Chatt, J.; Coffey, R. **S.** *J. Chem. SOC. A* **1969, 1963.**

Experimental Section

Starting Materials. The dirhenium octahydride complexes Re₂H₈- $(\mu$ -dppm)₂, Re₂H_s(dppe)₂, and Re₂H_s(PMe₃)₄ were prepared as described previously.⁷ The dmpm complexes $Re_2Cl_4(\mu$ -dmpm)₃²² and $Re_2(\mu$ -O₂- $CCH₃)Cl₄(\mu$ -dmpm)₂²³ were also obtained from published procedures. Trimethylphosphine and dmpm were purchased from Quantum Design, Inc., and Strem Chemicals, while dppe and dppm were obtained from Pressure Chemical Co. These ligands were used as received. The remaining reagents and solvents were obtained from commercial sources and used without further purification. Solvents were deoxygenated prior to use.

Reaction Procedures. All reactions and manipulations were performed under an atmosphere of dry dinitrogen gas with use of standard Schlenk techniques.

A. Synthesis of $\text{Re}_2\text{H}_8(\mu\text{-dmpm})_2$. A quantity of $\text{Re}_2(\text{O}_2\text{CCH}_3)\text{Cl}_4$ - $(dmpm)_2$ (0.248 g, 0.293 mmol) was mixed with 0.23 g of LiAlH₄ (6.1) mmol) and 15 mL of THF. The green reaction mixture was stirred at room temperature for 17 h and then cooled to -78 °C. The solution was hydrolyzed with a mixture of 5 mL of H₂O and 15 mL of THF that was added dropwise to the reaction flask. As the mixture warmed to room temperature, the color of the solution changed to brown, and after 2 h the reaction mixture was filtered by use of a cannula. The filtrate was collected and evaporated to dryness under vacuum. A minimum volume of benzene was added to extract the red-brown product, and this solution was filtered as before. The benzene solvent was removed under reduced pressure. The product, which appears red in solution, was isolated as a green solid and dried under vacuum; yield 0.065 g (34%). Anal. Calcd for $C_{10}H_{36}P_4Re_2$: C, 18.40; H, 5.57. Found: C, 18.59; H, 6.34.

B. Reactions of Re₂H₈(dppe)₂. (i) Formation of Re₂H₄(dppe)₃. A mixture of $Re₂H₈(dppe)₂$ (0.19 g, 0.16 mmol) and dppe (0.14 g, 0.36 mmol) was placed in a round-bottom flask equipped with a stir bar and N_2 inlet. The system was purged with gaseous N_2 , 15 mL of THF was added, and the mixture was stirred at room temperature for 17 h. The orange solution was treated with methanol (30 mL), and the volume was reduced by evaporation to give a red-brown solid. Filtration was carried out under N_2 by use of a cannula, and the product was washed sparingly with methanol and diethyl ether; yield 0.20 g (78%). Anal. Calcd for $C_{78}H_{76}P_6$ Re₂: C, 59.60; H, 4.88. Found: C, 59.21; H, 5.21.

This same product was isolated in 67% yield when benzene was used in place of THF as the reaction solvent.

(ii) Formation of $Re₂H₄(dppe)₂(dppm)$. With the use of a procedure similar to that in section $B(i)$, 0.100 g of $Re₂H₈(dppe)₂$ (0.085 mmol) and 0.072 g of dppm (0.19 mmol) were reacted together in THF for 24 h. Following completion of the reaction, the volume of the solvent was reduced to ≤ 2 mL under a stream of gaseous N_2 . An excess of methanol was added to the concentrated solution to initiate precipitation of the brown product, and the product was filtered off and washed with methanol and diethyl ether; yield 0.062 g (47%). Anal. Calcd for $C_{77}H_{74}P_6Re_2$: C, 59.37; H, 4.80. Found: C, 59.13; H, **5.05.**

C. Reaction of Re₂H₈(PMe₃)₄ with dppe. Formation of Re₂H₄-**(PMe₃)**4(dppe). With the use of a procedure similar to that in section $B(i)$, a mixture of $Re₂H₈(PMe₃)₄$ (0.040 g, 0.058 mmol) and dppe (0.023 g, 0.058 mmol) in *5* mL of THF was stirred at room temperature for 17 h. The bright orange solution was then evaporated to ca. 1 mL under a stream of gaseous N_2 , and ethanol was added to precipitate the redorange product. Filtration was carried out quickly to avoid oxidation of the product; yield $0.015 g (24%)$. Anal. Calcd for $C_{38}H_{72}O_4P_6Re_2$ (i.e. **Re2H4(PMe3)4(dppe).4H20):** C, 39.64; H, 6.32. Found: C, 39.34; H, 6.35. The presence of lattice H_2O has been confirmed by IR and ¹H NMR spectroscopy. The propensity of dirhenium polyhydrides to incorporate water and other lattice solvent molecules has been noted.^{7,8,10}

D. Synthesis of Dirhenium Pentahydrides. (i) $[Re₂H₅(dmpm)₃]BF₄$. A small quantity of a **1.5** M solution of dmpm in toluene (0.047 mL, 0.071 mmol) was added to a vessel that contained a solution of 0.044 g of $\text{Re}_2H_8(dmpm)_2$ (0.067 mmol) dissolved in 10 mL of CH_2Cl_2 . The red color of this solution immediately changed to brown upon addition of the phosphine. After a period of 30 min, 0.01 mL of $HBF_{4}E_{2}O$ was syringed into the flask, and 1 min later, an excess of diethyl ether was added to precipitate the product. The yellow solid was collected by filtration, washed with diethyl ether, and dried under vacuum; yield 0.031 g (51%). This complex was identified on the basis of the close similarity of its electrochemical and spectroscopic properties to those of the PF_6^- salt (vide infra, section D(ii)).

(ii) $[Re₂H₅(dmpm)₃]PF₆$. A quantity of $Re₂Cl₄(\mu-dmpm)₃$ (0.272 g, 0.295 mmol) was placed in a three-necked round-bottom flask equipped with a stir bar, N_2 gas inlet, and a side arm containing 0.17 g (4.5 mmol) of LiAIH4 (4.5 mmol). The remaining neck was sealed with a rubber septum, the system was purged with N_2 gas, and 15 mL of THF was added to the flask. Following the addition of the LiAlH4, the mixture turned green. This mixture was stirred at room temperature for 2 h and then hydrolyzed with a 5:15 (mL) mixture of H_2O/THF . Upon gentle heatingof the mixture for 2 h, its color changed to bright yellow. Insoluble lithium salts were removed by filtration of the mixture through Celite, and a flask containing the filtrate was sealed with a septum. The filtrate was then evaporated under vacuum to give a yellow residue, which was dissolved in a minimum volume of CH_2Cl_2 , and the solution was filtered into cold n-pentane to give a yellow precipitate; yield 0.170 g. This solid is a salt of the $[Re₂H₅(dmpm)₃]$ ⁺ cation and contains an unidentified anion which can be exchanged with PF_6 - by use of the following procedure. The aforementioned yellow solid was dissolved in **5** mL of water and mixed with a solution of KPF_6 (0.10 g, 0.54 mmol) in 1 mL of water. The yellow precipitate was filtered off, washed with H_2O and diethyl ether, and dried under vacuum. The product can be recrystallized from dichloromethane/diethyl ether; yield 75%. Anal. Calcd for $C_{15}H_{53}F_6O_3P_7$ -Re₂ (i.e. [Re₂H₅(dmpm)₃]PF₆·3H₂O): C, 18.29; H, 5.44. Found: C, 18.20; H, 5.61. The presence of $H₂O$ was confirmed by a resonance at δ +1.8 in the ¹NMR spectrum of a CDCl₃ solution of the complex. This resonance integrates to approximately three H_2O molecules. The propensity of dirhenium polyhydrides to incorporate water and other lattice solvent molecules has been noted. $7,8,10$

The BPh₄- salt can be isolated by use of a procedure similar to that described above by substituting NaBPh₄ for KPF_6 . This product was not studied in much detail because of its poor solubility properties.

(iii) $[Re_2D_5(dmpm)_3]PF_6$. A sample of this complex was prepared by a procedure similar to that described in section D(ii) but with use of LiAlD₄ in place of LiAlH₄ and D₂O in place of H₂O; yield 76%.

 (iv) [Re₂H₅(dppe)₃]BF₄. A small quantity of Re₂H₄(dppe)₃ (0.055 g, 0.035 mmol) was dissolved in 2 mL of CH_2Cl_2 to give a dark red solution, and 0.006 mL of HBF₄.Et₂O was added. After the mixture had been stirred for ca. 3 min, diethyl ether (30 mL) was added to the dark green solution. The gray-green precipitate that formed was filtered off, washed with diethyl ether, and dried in vacuo; yield 0.049 g (84%). Anal. Calcd for C79H79BC12F4P6Re2 (Le. **[Re2Hs(dppe)3]BF4CH2CI2):** C, 54.39; H, 4.57. Found: C, 54.70; H, 4.54.

(v) $[Re₂H₅(dppe)₂(dppm)]BF₄$. A solution of $Re₂H₄(dppe)₂(dppm)$ (0.032 g, 0.030 mmol) in *5* mL of THF was treated with 0.01 mL of $HBF₄·Et₂O$, whereupon the color of the reaction mixture changed from brown to green. It was stirred for **5** min and then treated with an excess of diethyl ether to give a green precipitate. The product was filtered off and washed with **5** mL of diethyl ether; yield 0.021 g (62%). The same product was obtained when NH_4PF_6 was used in place of $HBF_4·Et_2O$ and the reaction time was extended to 24 h. While repeated attempts to obtain a satisfactory microanalysis were unsuccessful, deprotonation of this complex to regenerate the tetrahydride starting material in good yield indicates that this formulation is correct. This deprotonation reaction was carried out by treating the product **(0.050** g, 0.030 mmol) with 0.2 mL of the organic base DBU **(1,8-diazabicyclo[5.4.0]-7-undeccne)** in **5** mL of THF. The solution was evaporated to <2 mL and an excess of methanol added to precipitate the product; yield 0.042 g (89%).

(vi) [Re₂H₅(PMe₃)₄(dppe)]BF₄. A small quantity of Re₂H₄(PMe₃)₄-(dppe).4H2O (0.021 g, 0.018 mmol) was dissolved in **5** mL of THF and this solution treated with 0.01 mL of HBF_4Et_2O . The orange solution turned green upon addition of the acid, and after **5** min an excess of diethyl ether was added to precipitate a green solid. The product was filtered off and washed with **5** mL of diethyl ether; yield 0.016 g (71%). Identification of the complex as $[Re₂H₅(PMe₃)₄(dppe)]BF₄$ was based upon its electrochemical and NMR spectral properties, which were the same as those observed for the sample of $[Re₂H₅(PMe₃)₄(dppe)]PF₆$ (vide infra, section D(vii)).

(vii) $[Re₂H₅(PMe₃)₄(dppe)]PF₆. Approximately stoichiometric quantum$ tities of Re₂H₈(PMe₃)₄ (0.050 g, 0.073 mmol), dppe (0.034 g, 0.085 mmol), and KPF_6 (0.020 g, 0.11 mmol) were placed in a round-bottom flask. The flask was sealed, the contents were purged with N_2 gas, and **5** mL of methanol was added by syringe. The reaction mixture was stirred at room temperature for 24 h, after which the solvent was evaporated under a stream of N_2 gas. Extraction of the residue into 1 mL of CH_2Cl_2 and the addition of diethyl ether to this extract yielded a green product,

⁽²²⁾ Anderson, L. B.; Cotton, F. A.; Falvello, L. R.; Harwood, W. **S.;** Lewis, (23) Ara. I.; Fanwick, P. E.; Walton, R. A. *J. Am.* Chem. **SOC. 1991,** *113,* D.; Walton, R. A. *Inorg.* Chem. **1986,** *25,* 3637.

^{1429.}

Table I. Crystallographic Data for $[Re₂H₅(dppe)₃]ReO₄(1),$ $[ReO_2(dppe)_2]ReO_4$ (2), and $[Re_2H_5(dmpm)_3]PF_6$ (3)

				The structures were solved by the use of the Patterson heavy-atom
chem formula	$Re_3P_6O_4C_{78}H_{77}$	$Re2P4O6C52H48$	$Re2P7F6C1$, H ₄₇	method which revealed the positions of the Re atoms. The remaining
fw	1822.92	1265.25	930.75	non-hydrogen atoms were located in succeeding difference Fourier
space group	$P2_1/n$ (No. 14)	$P2_1/n$ (No. 14)	$P2_1/n$ (No. 14)	syntheses. There was no evidence for the presence of lattice solvent
a, A	12.177(1)	9.805(2)	9.288(1)	molecules in any of the three structures. The structures were refined by
b, A	23.152(2)	14.500(3)	24.515(3)	full-matrix least-squares techniques where the function minimized was
c, A	26.843(4)	17.572(4)	13.761(3)	$\sum w(F_0 - F_0 ^2)$, where w is the weighting factor defined as $w = 1/\sigma^2(F_0)$.
β , deg	100.32(1)	92.89(2)	93.23(1)	The hydride ligands were not located in the structure of 1, their presence
V, \mathbf{A}^3	7445 (3)	2495 (2)	3128(1)	being inferred from the spectroscopic properties of this complex, and the
				hydrogen atoms of the dppe ligands in 1 were not included. During the
T. °C	21	21	-100	course of the structure refinement, two areas of electron density were
λ , A (Mo K α)	0.71073	0.71073	0.71073	located about general positions which we assumed were associated with
ρ_{calod} , g cm ⁻³	1.626	1.684	1.976	lattice solvent molecules and/or an anionic species. The former possibility
$\mu(Mo K\alpha)$, cm ⁻¹	51.05	50.86	82.32	was eliminated, since we found no evidence for the presence of THF or
transm coeff	$1.00 - 0.85$	$1.00 - 0.75$	$1.00 - 0.68$	methanol solvent from the ¹ H NMR spectrum of the batch of crystals
Rª	0.048	0.067	0.030	used, while the presence of an anionic species was supported by the IR
R_{w}^{b}	0.060	0.086	0.039	spectrum, which showed the $\nu(\text{Re}-\text{O})$ mode of $\text{Re}O_4$ at 905 (s) cm ⁻¹ .
				Essessesse sited belser ens secretad thet them may see a state was famoute.

 $P \cdot R = \sum ||F_0| - |F_0| \sum |F_0|$. $P \cdot R_w = [\sum w(|F_0| - |F_0|)^2 / \sum w |F_0|^2]^{1/2}; w = 1/2$ $\sigma^2(|F_o|)$.

which was filtered off and washed with diethyl ether; yield 0.046 g (51%). Anal. Calcd for $C_{38.5}H_{66}ClF_6P_7Re_2$ (i.e. $[Re_2H_5(PMe_3)_4(dppe)]$ -PFc1/2CH2C12): C, **36.47;** H, **5.26.** Found: C, **36.34;** H, **5.39.** The presence of a small amount of lattice CH₂Cl₂ was confirmed by a resonance at δ +5.4 in the ¹H NMR spectrum of a CDCl₃ solution of the complex.

(viii) $[Re₂H₅(PMe₃)₄(dppm)]PF₆.$ A procedure similar to that described in section D(vii) was used to prepare this complex from **0.081** g of RezH8(PMe3)4 **(0.12** mmol), **0.052** g of dppm **(0.13** mmol), and **0.025** g of KPF6 (0.15 mmol); yield **0.042** g **(30%).** Anal. Calcd for C37H63F~P7Re2: c, **36.69;** H, **5.25.** Found: c, **36.96;** H, **5.96.**

Preparation of Single Crystals for X-ray Structure Analyses. Crystals of the complexes $[Re₂H₅(dppe)₃]ReO₄(1)$ and $[ReO₂(dppe)₂]ReO₄(2)$ were obtained serendipitously during unsuccessful attempts to grow single crystals of $Re₂H₈(dppe)₂$ from THF/methanol over a period of several weeks. Samples of $\text{Re}_2H_8(\text{dppe})_2$ were dissolved in deoxygenated THF, and these solutions were placed in disposable pipets that had been sealed off at one end. These tubes were placed inside a large test tube that contained a quantity of methanol, the test tube was sealed, and vapor diffusion was allowed to take place slowly. It was noted that after a few days some of the original sample had precipitated from solution **as** a powder. However, after several weeks, yellow-brown crystals had formed at the surface of the powder. The system was then opened (with a brief exposure to the atmosphere) in order to examine the crystals under a microscope and was repurged with N_2 and allowed to remain at room temperature for several moredays. By this time a few additional crystals had formed in the tubes at the surface of the solvent. These crystals were dark orange and were apparently of a type different from those of the first batch. Both sets of crystals were found to be suitable for X-ray crystallographic analysis. However, neither batch turned out to be crystals of the original sample, $Re₂H₈(dppe)₂$. The dark orange crystals were found to be those of $[Re₂H₅(dppe)₃]ReO₄ (1), while the yellow-brown$ crystals proved to be [Re02(dppe)2]Re04 **(2).** Crystals of a different salt of the $[Re₂H₅(dppe)₃]$ ⁺ cation, $[Re₂H₅(dppe)₃]BF₄$, were grown from dichloromethane/*n*-heptane. Suitable crystals of $[Re₂H₅(dmpm)₃]PF₆$ **(3)** were obtained by the slow diffusion of isopropyl ether into a solution of this complex in 1,2-dichloroethane.

X-ray Structure Analyses. The structures of $[Re₂H₅(dppe)₃]ReO₄$ (1) , $[ReO₂(dppe)₂]ReO₄(2)$, and $[Re₂H₅(dmpm)₃]PF₆(3)$ were determined by the application of standard procedures. Data for **1** and **2** were collected at room temperature and those for **3** at -100 **'C.** The basic crystallographic parameters are listed in Table I. The cell constants are based on 25 reflections with $21.8^{\circ} < \theta < 22.5^{\circ}$, 18.6° $< \theta < 20.7^{\circ}$, and $23.0 < \theta < 25.0^{\circ}$ for 1-3, respectively. Three standard reflections were measured after every *5000* **s** of beam exposure during data collection, but we observed no systematic variations in decay of these standards. Calculations were performed on a microVAX I1 computer using the Enraf-Nonius structure determination package. The crystals of **1-3** were all found to belong to the monoclinic space group $P2_1/n$ (No. 14). Lorentz and polarization corrections were applied to all three sets of data, and an empirical absorption correction²⁴ was applied in all cases. The linear

(24) Walker, **N.;** Stuart, D. *Acta Crystallogr., Sect. A: Found Crystallogr.* **1983,** *A39,* **158.**

absorption coefficient used was **51.05** cm-' for **1, 50.86** cm-l for **2,** and **82.32** cm-l for **3.** No corrections for extinction were applied.

The hydride ligands were not located in the structure of **1,** their prescnce being inferred from the spectroscopic properties of this complex, and the hydrogen atoms of the dppe ligands in **1** were not included. During the course of the structure refinement, two areas of electron density were located about general positions which we assumed were associated with lattice solvent molecules and/or an anionic species. The former possibility was eliminated, since we found no evidence for the presence of THF or methanol solvent from the IH NMR spectrum of the batch of crystals used, while the presence of an anionic species was supported by the IR spectrum, which showed the $\nu(\text{Re}-\text{O})$ mode of ReO_4 ⁻ at 905 (s) cm⁻¹. For reasons cited below, we assumed that there was one anion per formula unit. In the refinement the rhenium atoms of the perrhenate anions were constrained to have multiplicities such that $M_{\text{Re}(3)} = 100 - M_{\text{Re}(4)}$. Although convergence was achieved with multiplicities of **76%** for Re(3) and **24%** for Re(4), these atoms had rather large temperature factors and the oxygen atoms associated with each ReO₄- could not be identified. It is uncertain whether this is a consequence of the large thermal motions of the rhenium atoms or whether it reflects a disorder of the anions. All atoms were refined anisotropically, and corrections for anomalous scattering were applied.²⁵ The largest peak in the final difference Fourier map was $1.93 \, \text{e}/\text{Å}^3$ and was near one of these perrhenate rhenium atoms. On the basis of this structure analysis and the spectroscopic properties of this complex, it is accorded the formulation $[Re₂H₅(dppe)₃]$ -ReO4. Further support for this formulation was provided by our attempted characterization of an authentic sample of $[Re₂H₅(dppe)₃]BF₄$. The crystal selected was isomorphous with that of 1: space group $P2_1/n$, a $= 12.199$ (7) Å, $b = 23.545$ (7) Å, $c = 26.934$ (7) Å, $\beta = 100.32$ (1)^o, $V = 7445$ (3) Å³, and $Z = 4$. While refinement of this structure showed the cation to be well-behaved and to be *identical in all respects* with that present in **1,** our attempts to refine the anion were unsuccessful, probably as a result of a disorder problem, and we abandoned the refinement at a stage where $R = 0.062$ ($R_w = 0.081$). However, this result is good evidence for our structural conclusions concerning the correct identity of **1.**

The structure refinement of **2** was routine, with the mononuclear trans- $[ReO₂(dppe)₂]$ ⁺ cation residing at an inversion center and the perrhenate anion at a general position. Hydrogen atoms of the dppe ligands were not included. Refinement of ReO₄- was not very satisfactory and gave rather disparate Re-O distances. This may reflect a disorder problem. However, since this is a known compound and is not of special significance in the present study, further refinement was not pursued. All atoms, except the oxygen atoms of the perrhenate anion, were refined anisotropically, and corrections for anomalous scattering were applied to these atoms.25 The largest peak in the final difference Fourier map was **3.20** e/\AA ³ and was a ghost of the perrhenate rhenium atom.

In the refinement of **3,** the five hydride ligands were located following anisotropic refinement of all non-hydrogen atoms. Hydrogen atoms of thedmpm ligands were included at fixed positions, which werecalculated by assuming idealized geometry and a C-H bond distance of **0.95** A. We assumed that the value of $B(H)$, i.e., the isotropic equivalent thermal parameter for the hydrogen atoms, was equal to $1.3[B_{eqv}(C)]$ at the time of the inclusion of this parameter in the refinement procedure. While these hydrogen atoms were used in the calculation of *F,,* their positions were not refined. All non-hydrogen atoms were refined anisotropically, and corrections for anomalous scattering were applied to these atoms.2' The largest peak in the final difference Fourier map **(1.67** e/A3) was at nonbonding distances to the cation and anion.

Positional parameters and their errors for the important atoms of **1-3** are listed in Tables 11-IV. Some important intramolecular bond distances and angles for these structures are given in Tables V-VII. Tables giving full details of the crystal data and data collection parameters (Tables **S143).** the positional parameters for all atoms (Tables **S4-S7),** the

⁽²⁵⁾ (a) Cromer, **D.** T. *International Tables for X-ray Crystallography;* Kynoch: Birmingham, England, **1974; Vol.** IV, Table **2.3.1.** (b) **For** the scattering factors used in the structure solution see: Cromer, D. T.; Waber, J. T. *Ibid.,* Table **2.2B.**

Table **11.** Positional Parameters and Equivalent Isotropic Displacement Parameters **(A2)** for the Non-Phenyl Atoms of **1** and Their Estimated Standard Deviations"

B
2.19(1)
2.25(1)
10.17(5)
11.3(2)
2.52(7)
2.74(8)
2.81(8)
2.48(8)
3.04(8)
3.19(8)
2.9(3)
4.2(4)
3.5(4)
2.6(3)
6.0(5)
5.9(5)

*^a*Anisotropically refined atoms are given in the form of the isotropic equivalent thermal parameter defined as $(4/3)[a^2\beta(1,1) + b^2\beta(2,2) +$ $c^2\beta(3,3) + ab(\cos \gamma)\beta(1,2) + ac(\cos \beta)\beta(1,3) + bc(\cos \alpha)\beta(2,3)$. Data for the phenyl group atoms are available as supplementary material.

Table **111.** Positional Parameters and Equivalent Isotropic Displacement Parameters **(A2)** for the Non-Phenyl Atoms of **2** and Their Estimated Standard Deviations"

x	ν	z	B
0	0	0	3.13(1)
0.0711(4)	$-0.1425(3)$	0.0713(2)	3.59(7)
$-0.1346(4)$	$-0.1179(3)$	$-0.0739(2)$	3.62(7)
0.1395(9)	$-0.0009(7)$	$-0.0611(5)$	4.4(2)
$-0.053(2)$	$-0.236(1)$	0.045(1)	4.9(3)
$-0.182(2)$	$-0.200(1)$	$-0.0015(8)$	4.5(3)
0.3497(2)	$-0.0091(1)$	0.5497(1)	7.37(4)
0.290(5)	0.091(4)	0.559(3)	$16(2)^*$
0.273(4)	$-0.061(3)$	0.491(2)	$10.2(9)$ *
0.286(6)	$-0.070(4)$	0.611(3)	16 (2)*
0.537(7)	$-0.016(4)$	0.571(4)	18 (2)*

Starred values indicate atoms were refined isotropically. Anisotropically refined atoms are given in the form of the isotropic equivalent thermal parameter defined as $(4/3)[a^2\beta(1,1) + b^2\beta(2,2) + c^2\beta(3,3) + c^2\beta(3,3)]$ $ab(\cos \gamma)\beta(1,2) + ac(\cos \beta)\beta(1,3) + bc(\cos \alpha)\beta(2,3)$. Data for the phenyl group atoms are available as supplementary material.

anisotropic thermal parameters (Tables S8-SlO), and complete bond distances (Tables S11-S13) and bond angles (Tables S14-S16) for 1-3, as well as figures showing the full atomic numbering schemes for the cations of **1** and **2** (Figures S1 and S2), are available as supplementary material.

Physical Measurements. IBM Instruments IR/32 and Perkin-Elmer 1800 FTIR spectrometers were used to record the IR spectra of compounds as **Nujol** mulls supported on KBr plates in the region 4800-400 cm-I. Electrochemical measurements were carried out by the use of a Bioanalytical Systems Inc. Model CV-1A instrument on dichloromethane solutions that contained 0.1 M tetra-n-butylammonium hexafluorophosphate (TBAH) as the supporting electrolyte. A Pt-bead working electrode and a Pt-wire auxiliary electrode were utilized. $E_{1/2}$ values, determined as $(E_{p,a} + E_{p,c})/2$, were referenced to the silver/silver chloride (Ag) AgC1) electrode at room temperature and were uncorrected for junction potentials. Under our experimental conditions, the ferrocenium/ferrocene couple is at $E_{1/2}$ = +0.47 V vs Ag/AgCl. Bulk electrolyses were carried out with the use of a Pt-gauze working electrode and a Bioanalytical Systems Inc. Model SP-2 potentiostat. ¹H and ³¹P NMR spectra were recorded on a Varian XL-200 spectrometer. Proton resonances were referenced internally to the residual protons in the incompletely deuteriated solvent (δ +7.20 in C₆D₆, δ +7.10 (C₆H₅) and δ +2.10 (CH₃) in C₇D₈, δ +5.35 in CH₂Cl₂, δ +4.8 in D₂O, and δ +2.17 in (CD₃)₂CO solvent). Phosphorus resonances were referenced externally to 85% H_3 -PO₄. X-Band ESR spectra were recorded at ca. -160 °C with the use of a Varian E-109 spectrometer. Conductivity measurements were made on solutions of the samples at a concentration of ca. 1.0×10^{-3} M utilizing an Industrial Instruments Inc. Model RC-16B2 conductivity bridge.

Elemental microanalyses were carried out by Dr. H. D. Lee of the Purdue University Microanalytical Laboratory.

Table IV. Positional Parameters and Equivalent Isotropic Displacement Parameters **(A2)** for All Atoms except the Hydrogen Atoms of the dmpm Ligands of 3 and Their Estimated Standard Deviations^a

atom	x	у	z	B
Re(1)	0.52978(3)	0.11106(1)	0.32164(2)	1.740(5)
Re(2)	0.17776(3)	0.05922(1)	0.28739(2)	1.805(5)
P(11)	0.4858(2)	0.15217(8)	0.1638(1)	2.27(4)
P(12)	0.6023(2)	0.02155(8)	0.2828(1)	2.17(4)
P(13)	0.4300(2)	0.17441(8)	0.4293(1)	2.16(4)
P(21)	0.1740(2)	0.10562(8)	0.1334(1)	2.39(4)
P(22)	0.2902(2)	$-0.02337(8)$	0.2457(1)	2.16(4)
P(23)	0.1186(2)	0.12666(9)	0.4029(1)	2.39(4)
C(1B)	0.3495(8)	0.1176(4)	0.0835(6)	2.8(2)
C(2B)	0.4710(8)	$-0.0326(3)$	0.3017(6)	2.4(1)
C(3B)	0.2677(8)	0.1502(3)	0.4838(5)	2.6(2)
C(111)	0.6391(9)	0.1534(4)	0.0861(6)	3.8(2)
C(112)	0.433(1)	0.2241(3)	0.1517(6)	3.6(2)
C(121)	0.6685(9)	0.0067(3)	0.1630(6)	3.6(2)
C(122)	0.7504(8)	$-0.0050(3)$	0.3601(6)	3.0(2)
C(131)	0.548(1)	0.1857(4)	0.5386(6)	3.5(2)
C(132)	0.385(1)	0.2445(3)	0.3963(7)	3.5(2)
C(211)	0.0811(9)	0.0702(4)	0.0304(7)	4.1(2)
C(212)	0.083(1)	0.1714(4)	0.1167(7)	4.3(2)
C(221)	0.313(1)	$-0.0438(4)$	0.1198(7)	3.8(2)
C(222)	0.2036(9)	$-0.0839(4)$	0.2901(8)	3.9(2)
C(231)	0.025(1)	0.1894(4)	0.3668(8)	4.2(2)
C(232)	$-0.0025(9)$	0.1019(4)	0.4923(6)	3.5(2)
H(B)	0.373(8)	0.100(3)	0.289(6)	$1(2)^*$
H(11)	0.501(9)	0.080(4)	0.424(6)	$1(2)^*$
H(12)	0.66(1)	0.108(4)	0.411(8)	$4(3)$ *
H(21)	0.25(1)	0.030(5)	0.402(8)	$3(3)^*$
H(22)	0.09(1)	0.013(4)	0.344(6)	$2(2)^*$
P(1000)	0.2968(2)	0.17943(7)	0.7956(1)	2.08(4)
F(1001)	0.3196(9)	0.1410(3)	0.7053(4)	6.6(2)
F(1002)	0.2989(9)	0.2317(2)	0.7346(5)	7.4(2)
F(1003)	0.1323(9)	0.1737(4)	0.772(1)	13.9(4)
F(1004)	0.289(1)	0.1244(3)	0.8556(5)	12.0(3)
F(1005)	0.4582(9)	0.1817(4)	0.8177(9)	12.3(3)
F(1006)	0.274(1)	0.2138(3)	0.8890(5)	9.4(2)

Starred values indicate atoms were refined isotropically. Anisotropically refined atoms are given in the form of the isotropic equivalent thermal parameter defined as $(4/3)[a^2\beta(1,1) + b^2\beta(2,2) + c^2\beta(3,3) + c^2\beta(3,3)]$ $ab(\cos \gamma)\beta(1,2) + ac(\cos \beta)\beta(1,3) + bc(\cos \alpha)\beta(2,3)].$

Table V. Important Bond Distances **(A)** and Bond Angles (deg) for the Cation of **1"**

Bond Distances							
$Re(1) - Re(2)$ $Re(1) - P(11)$	2.5755(6) 2.336(3)	$Re(2) - P(21)$ $Re(2) - P(22)$	2.360(3) 2.334(3)				
$Re(1) - P(12)$	2.391(3)	$Re(2) - P(23)$	2.361(3)				
$Re(1) - P(13)$	2.373(3)						
	Bond Angles						
$Re(1) - Re(2) - P(21)$	105.27 (8)	$Re(2) - Re(1) - P(11)$	108.61 (8)				
$Re(1) - Re(2) - P(22)$	124.92 (9)	$Re(2) - Re(1) - P(12)$	115.66 (8)				
$Re(1) - Re(2) - P(23)$ $P(21) - Re(2) - P(22)$	130.24 (9) 94.4 (1)	$Re(2) - Re(1) - P(13)$ $P(11) - Re(1) - P(12)$	140.97 (8) 94.7 (1)				
$P(21) - Re(2) - P(23)$	115.6(1)	$P(11) - Re(1) - P(13)$	105.5 (1)				
$P(22) - Re(2) - P(23)$	80.1(1)	$P(12) - Re(1) - P(13)$	79.3 (1)				

least significant digits. Numbers in parentheses are estimated standard deviations in the

Results

The present study was carried out with the main objectives of (i) examining the reactivity of $Re₂H₈(dppe)₂$ toward dppe and other phosphines and (ii) designing routes to dirhenium polyhydride complexes that contained the dmpm ligand. Accordingly, these results are presented separately.

 (a) **Reactions of** $Re₂H₈(dppe)₂$ **with Phosphines.** The title complex reacts with an excess of dppe in both methanol and benzene to afford the red-brown tetrahydrido complex $Re₂H₄$ - $(dppe)_3$ in ca. 70% yield. This complex forms nonconducting solutions in acetone. The treatment of this complex with

Table VI. Important Bond Distances **(A)** and Bond Angles (deg) for **20** ~ ~ ~~ ~~

Bond Distances						
$Re(1) - P(1)$ $Re(1) - P(2)$	2.497(3) 2.485(3)	$Re(2) - O(1)$	1.781(6)			
Bond Angles						
$P(1) - Re(1) - P(1)$	180.0	$P(2) - Re(1) - P(2)$	180.0			
$P(1) - Re(1) - P(2)$	79.7 (1)	$P(2) - Re(1) - O(1)$	94.8(2)			
$P(1) - Re(1) - P(2)$	100.3(1)	$P(2)-Re(1)-O(1)$	85.2(2)			
$P(1) - Re(1) - O(1)$	95.3(3)	$O(1) - Re(1) - O(1)$	180.0			
$P(1) - Re(1) - O(1)$	84.7(3)					

^a Numbers in parentheses are estimated standard deviations in the least significant digits.

Table VII. Important Bond Distances **(A)** and Bond Angles (deg) for the Cation of 3^a

Bond Distances						
$Re(1) - P(11)$	2.408 (2)	$Re(2) - P(21)$	2.404(2)			
$Re(1) - P(12)$	2.365(2)	$Re(2)-P(22)$	2.363(2)			
$Re(1) - P(13)$	2.371(2)	$Re(2)-P(23)$	2.379 (2)			
$Re(1) - H(B)$	1.53(7)	$Re(2)-H(B)$	2.06(7)			
$Re(1) - H(11)$	1.64(8)	$Re(2) - H(21)$	1.8(1)			
$Re(1) - H(12)$	1.7(1)	$Re(2) - H(22)$	1.62(8)			
Bond Angles ^b						
$Re(2) - Re(1) - P(11)$	85.48 (4)	$P(12) - Re(1) - H(B)$	92 (3)			
$Re(2) - Re(1) - P(12)$	84.77 (4)	$P(12) - Re(1) - H(11)$	80(3)			
$Re(2) - Re(1) - P(13)$	85.83(4)	$P(12) - Re(1) - H(12)$	86(3)			
$Re(2) - Re(1) - H(11)$	76 (3)	$P(13) - Re(1) - H(B)$	85(3)			
$Re(2) - Re(1) - H(12)$	135 (3)	$P(13) - Re(1) - H(11)$	71 (3)			
$P(11) - Re(1) - P(12)$	102.73 (7)	$P(13) - Re(1) - H(12)$	82(3)			
$P(11) - Re(1) - P(13)$	103.72 (7)	$H(B)-Re(1)-H(11)$	88 (4)			
$P(11) - Re(1) - H(B)$	73 (3)	$H(B)-Re(1)-H(12)$	148 (4)			
$P(11) - Re(1) - H(11)$	161(3)	$H(11) - Re(1) - H(12)$	60(4)			
$P(11) - Re(1) - H(12)$	139(3)	$Re(1) - H(B) - Re(2)$	156 (5)			
$P(12) - Re(1) - P(13)$	151.07 (6)					

Numbers in parentheses are estimated standard deviations in the least significant digits. **b** Angles about Re(1) only are given. The corresponding angles about $\text{Re}(2)$ are essentially the same and are provided in the supplementary material.

 $HBF_4 \cdot Et_2O$ yields the gray-green salt $[Re_2H_5(dppe)_3]BF_4$, which contains the very stable $[Re₂H₅(dppe)₃]$ ⁺ cation. We have been unable to deprotonate this pentahydride cation (NEt₃, KH, LiEt₃-BH, n-BuLi, and KO-t-Bu were used) to re-form the parent tetrahydride. The mixed-phosphine complexes $Re₂H₄(dppe)₂$ -(dppm) and $[Re₂H₅(dppe)₂(dppm)]BF₄$ have been prepared by use of procedures analogous to those described above (see eqs **1** and 2). However, in the case of $[Re₂H₅(dppe)₂(dppm)]⁺$ de-

$$
\text{Re}_2\text{H}_8(\text{dppe})_2 + \text{LL} \rightarrow \text{Re}_2\text{H}_4(\text{dppe})_2(\text{LL}) + 2\text{H}_2
$$
 (1)

$$
Re2H4(dppe)2(LL) + HBF4 \rightarrow [Re2H5(dppe)2(LL)]BF4
$$
\n(2)

$LL =$ dppe, dppm

protonation to regenerate $Re₂H₄(dppe)₂(dppm)$ can be accomplished through the use of the organic base DBU. Solutions of the pentahydride complexes in acetone have conductivities in accord with 1:1 electrolyte behavior $(\Lambda_m \approx 125 \Omega^{-1} \text{ cm}^2 \text{ mol}^{-1})$.

We were unable to obtain a pure product of composition $Re₂H₄(dppe)₂(PMe₃)₂$ upon reacting $Re₂H₈(dppe)₂$ with $PMe₃$ in THF. Although the product displayed a deceptively simple ¹H NMR spectrum (in C_6D_6), with only a *single* broad hydride resonance at δ -7.4, ³¹P{¹H} NMR spectroscopy indicated that it was a mixture. A better defined mixed dppe-PMe₃ complex was obtained by the alternative procedure of reacting $Re₂H₈$ -

 $(PMe₃)₄$ with dppe.²⁶ This produced the red-orange compound Re2H4(PMe3)4(dppe) in fairly low yield **(24%),** which could be converted to green $[Re₂H₅(PMe₃)₄(dppe)]BF₄ upon treatment$ with $HBF_4·Et_2O$. The PF_6- salt of this same cation was prepared by stirring a mixture of $Re₂H₈(PMe₃)₄$, dppe, and KPF₆ in methanol, a strategy that works equally well in preparing $[Re₂H₅(PMe₃)₄(dppm)]PF₆ (eq 3).²⁷ Surprisingly, we were not$ successful in obtaining the pure tetrahydride $Re₂H₄(PMe₃)₄(dppm)$ from the reaction of $Re₂H₈(PMe₃)₄$ with dppm.

$$
Re2H8(PMe3)4 + LL + PF6- MeOH
$$

[Re₇H₅(PMe₃)₄(LL)]PF₆ + 2H₂ (3)

$LL =$ dppe, dppm

The more important electrochemical data and *room-temperature* spectroscopic properties of these dppe- and dppm-containing polyhydride complexes are summarized in Table VIII. In some instances, temperature-range NMR spectra data were also recorded.

The ¹H NMR spectra of $Re₂H₄(dppe)₃$ and $Re₂H₄(dppe)₂$ -(dppm) in CD_2Cl_2 at room temperature each show two broad $Re-H$ resonances (Table VIII), the downfield resonance being assigned to bridging hydrido ligands and the upfield resonance to terminal hydride ligands.28 The ratio of bridging to terminal Re-H ligands in Re₂H₄(dppe)₃ is 2:2 and therefore differs from the ratio for $\text{Re}_2H_4(\text{dppe})_2(\text{dppm})$, which is 3:1. While the spectrum of $\text{Re}_2H_4(\text{dppe})_2(\text{dppm})$ is unaffected by cooling the solution to -80 °C, that of $Re₂H₄(dppe)₃$ is temperature dependent. This spectrum was examined over a temperature range of $+70$ to -70 °C (in C_6D_6 from $+70$ to $+20$ °C and in CD_2Cl_2 from $+30$ to -70 °C). At the low-temperature limit of -70 °C, the hydride resonances appear as two broad singlets of similar intensity at δ -4.3 and -11.4. As the temperature is raised, these resonances broaden slowly (and shift slightly) until coalescence is reached (by ca. +70 °C). The room-temperature³¹P{¹H}NMR spectrum of $Re₂H₄(dppe)₃$ (in CD₂Cl₂) exhibits broad resonances at 6 **+49.2** and **+46.9,** the former being the much broader of the two. As the temperature is lowered to -70 °C, these resonances shift downfield slightly. The peak at δ +46.9 shifts to δ +49.4 but otherwise remains essentially unchanged, while the other resonancesplits into two sharper resonances at 6 *+52.9* and **+52.4.** The three resonances seen at -70 °C are of similar intensity, thereby suggesting the presence of three pairs of inequivalent phosphorus atoms. The chemical shifts of these phosphorus resonances are characteristic of chelating dppe ligands in dirhenium complexes.29 Note that the downfield shift of these resonances with a decrease in temperature may reflect the presence of a small amount of paramagnetic impurity, probably $[Re₂H₄ (dppe)_3$ ⁺. The cyclic voltammetric properties of $Re₂H₄(dppe)_3$ show the presence of a very accessible one-electron oxidation $(E_{1/2}(\text{ox}) = -0.54 \text{ V} \text{ vs } \text{Ag/AgCl} \text{ in } 0.1 \text{ M} \text{ TBAH/CH}_2\text{Cl}_2),$ behavior which is closely related to that exhibited by the other tetrahydrido complexes $Re₂H₄(dppe)₂(dppm)$ and $Re₂H₄-$

⁽²⁶⁾ The formation of $Re₂H₄(PMe₃)₄(dppe)$ was monitored by ¹H NMR spectroscopy of a solution containing 1:l stoichiometric amounts of $\text{Re}_2H_8(PM\mathbf{e}_3)$, and dppe in deoxygenated C_6D_6 . The spectrum was recorded after reaction times of 0.5, 1, and 48 h. The formation of the tetrahydride was clearly shown by the growth of a hydride resonance at δ tet, ${}^{2}J_{\text{PH}} = 12 \text{ Hz}$)¹⁵ was also indicated. The latter species is formed¹⁵ by the reaction of $Re_2H_8(PMe_3)_4$ with small amounts of free PMe₃ which are released in the system.

⁽²⁷⁾ The protonation of neutral dirhenium polyhydrides by methanol is well documented.¹⁵

⁽²⁸⁾ This chemical shift between Re-H-Re and Re-H units is well established^{24,11,14-16,20} and is quite reliable for determining the relative numbers of bridging and terminal hydride ligands.

⁽²⁹⁾ Cutler, **A.** R.; Derringer, D. R.; Fanwick, P. **E.;** Walton, R. **A.** *J.* Am. *Chem. SOC.* **1988,** *110,* **5024.**

Table VIII. Electrochemical and Spectroscopic Properties of Dirhenium Tetrahydride and Pentahydride Complexes with Bidentate Phosphines

	CV half-wave pot., Va,b			IR, cm^{-1} :	¹ H NMR, δ : ^d	$31P\{1H\}NMR$,	
complex	$E_{p,a}$	$E_{1/2}(\text{ox})^b$	$E_{1/2}(\text{ox})^b$	$\nu(\text{Re-H})$	$Re-H$	Sd,e	solvent $\sqrt{ }$
$Re2H4(dppe)3$	$+0.23$		$-0.54(150)$	1974 w, br, 1892 w, br, 1810 w, br	-4.7 s (1), $-13.1 s(1)$	$+49.4$ s (2), $+46.9$ s (1)	CD ₂ Cl ₂
$[Re2H5(dppe)3]BF4$		$+1.00(90)$	$+0.32(90)$	1968 vw, br, 1830 vw, br, 1772 vw	$-7.35 s$	$+59.4$ s (2), $+22.7$ s (1)	CD ₂ Cl ₂
$Re2H4(dppe)2(dppm)$	$+0.04s$		$-0.56(120)$	1892 w. 1810 vw. 1774 vw	$-6.0 s(3)$, $-7.7 s(1)$	$+55.9$ s (2), $+0.6$ s (1)	CD ₂ Cl ₂
$[Re2H5(dppe)2(dppm)]BF4$	$+1.30$	$+1.14k$	$+0.28(110)$	1966 vw. 1898 vw. 1814 vw	$-6.0 s$	$+57.9$ s (2), $+1.1$ s (1)	CD ₂
$Re2H4(PMe3)4(dppe)$	-0.02		$-0.81(110)$	1920 w.br	$-7.9 s$	$+69.6$ s (2), -29.3 s (1), $-33.15 s(3)$	C_6D_6
$[Re2H5(PMe3)4(dppe)]PF6$		$+0.85h$	$+0.06(120)$	2026 w, 1970 br, sh, 1902 vw, 1832 vw	$-6.8 s$	$+64.5 d(2)/-31.5 s(3)$, -37.7 t (1)	CD,CI,
$[Re2H5(PMe3)4(dppm)]PF6$	$+1.42$	$+0.75h$	$+0.04(110)$	1990 w. br. 1888 w	$-6.3 s$	$+10.5$ s (1), -21.8 s (2)	CD_2Cl_2
$[Re2H5(dmpm)3]PF6$		$+0.94h$	$+0.62h$	2008 m, 1940 m-s, 1916 m-s. 1856 m. br	-8.4 sp ¹	$-28.7 s$	CD ₂ Cl ₂

Versus Ag/AgCI. Recorded on solutions in **0.1** M TBAH/CH2Cl2 by the use of a Pt-bead electrode. Data obtained at a sweep rate of **200** mV s^{-1} . ^{*b*} Numbers in parentheses are ΔE_p (i.e. $E_{p,a} - E_{p,c}$) in mV. *Recorded as Nujol mulls. For complexes that contain the BF₄- anion a* $\nu(B-F)$ *mode* is present at ca. 1060 cm⁻¹, while for those with the PF₆⁻ anion there is a ν (P-F) mode at ca. 840 cm⁻¹. ^{*a*} Spectra recorded at room temperature. For temperature-range data see text. Abbreviations are as follows: $s =$ singlet, $d =$ doublet, $t =$ triplet, $sp =$ septet. Numbers in parentheses signify the relative intensities of the signals in each spectrum. **e** For compounds that contain the **PF6-** anion an additional resonance (a septet) is present at **6** -144.0 (± 0.2) . *I* Solvent used in the NMR spectral measurements. *F* Other irreversible oxidation processes at +0.21 and +1.00 **V**. *h* $E_{p,a}$ value given. ¹²J_{PH} $= 9.2$ Hz. $\frac{1}{2} J_{PP} = 12$ Hz.

 $(PMe₃)₄(dppe)$ (Table VIII). The exposure of dichloromethane solutions of $\text{Re}_2\text{H}_4(\text{dppe})_3$ to the air results in a quite rapid color change from orange to blue-green to yellow and complete decomposition of the complex (as monitored by cyclic voltammetry).³⁰ The blue-green species is probably $[Re₂H₄ (dppe)_3$ ⁺, since the bulk electrolysis of solutions of $Re₂H₄(dppe)_3$ at **-0.4** V (Le. anodic of the process at **-0.54** V) generates solutions of the ESR-active paramagnetic cation. An X-band spectrum (recorded at **-160** "C) shows a very broad signal centered at **g** = **2.14** which displays no resolvable hyperfine structure. The diamagnetic neutral tetrahydride is regenerated upon re-reducing this solution at **-0.80** V, with retention of structural integrity (as monitored by CV) and loss of this ESR signal. These changes are reproducible through several cycles of oxidation and reduction.

The singlets at δ +59.4 and +22.7 in the room-temperature $(+20 °C)$ ³¹P{¹H} NMR spectrum of $[Re₂H₅(dppe)₃]BF₄(Table)$ VIII) are characteristic of chelating and bridging dppe ligands,³¹ respectively, while the resonances at δ +57.9 and +1.1 in the spectrum of $[Re₂H₅(dppe)₂(dppm)] BF₄$ (Table VIII) can be assigned to chelating dppe³¹ and bridging dppm²⁹ ligands, respectively. The latter spectrum is therefore similar to that of the parent tetrahydride $Re₂H₄(dppe)₂(dppm)$ (Table VIII). When a CD₂Cl₂ solution of $[Re₂H₅(dppe)₃]BF₄$ was cooled to -40 °C, the phosphorus signal at 6 **+22.7** remained unchanged while that at δ +59.4 split into singlets of equal intensity at δ +62.6 and **+58.6,** signifying the presence of inequivalent pairs of phosphorus atoms associated with the dppe ligands. At this same temperature of -40 °C (and below), the ¹H NMR spectrum (in CD₂Cl₂) shows a bridging hydride resonance as a broad singlet at 6 **-6.6** (intensity 3) and an apparent quartet at δ -7.7 (intensity 2), the latter feature being assigned to the terminal hydride ligands that are each coupled to three phosphorus atoms $(^2J_{PH} \approx 37 \text{ Hz})$. When this solution is allowed to warm to $+30$ °C, these hydride resonances coalesce and transform into a broad singlet at δ –7.3 (Figure **1).** The **IH** NMR spectrum of a solution of this complex in CD_3NO_2 shows that between $+30$ and $+70$ °C this singlet remains essentially unchanged. The spectrum of a solution in $(CD_3)_2$ SO also shows a singlet $(\delta -8.0)$ at $+70$ °C.

The structure of the $[Re₂H₅(dppe)₃]$ ⁺ cation was determined from a single-crystal X-ray structure analysis of a crystal of composition $[Re_2H_5(dppe)_3]ReO_4$ that was obtained serendipitously, along with $[ReO₂(dppe)₂]ReO₄$, during attempts to grow single crystals of $Re₂H₈(dppe)₂$ over a period of several weeks.

Figure 1. Variable-temperature ¹H NMR spectrum of the complex $[Re₂H₅(dppe)₃]BF₄$ (recorded in CD₂Cl₂) in the hydride region. The temperatures vary from $+30$ °C (bottom) to -40 °C (top). The spectrum does not change significantly at temperatures below -40 °C.

The structures of the $[Re₂H₅(dppe)₃]$ ⁺ (hydride ligands omitted) and trans-[ReO₂(dppe)₂]⁺ cations are shown in Figures 2 and 3, while key structural parameters are provided in Tables V and VI. A crystal structure determination on a crystal of $[Re₂H₅ (dppe)_3]BF_4$, from a sample prepared by the protonation of $Re₂H₄(dppe)₃$, showed it to be isostructural with $[Re₂H₅-$ (dppe)slReO4, but the structure refinement was terminated because of **a** serious disorder problem involving the BF4- anion. The salt $[ReO_2(dppe)_2]ReO_4$ proved to be a known complex, which, along with other complexes of the type $[ReO_2(dppe)_2]X$, had been reported by Freni et al.³² in 1967. However, it has not previously been structurally characterized. The IR spectrum of our crystals (Nujol mull, ν (Re=O) at 908 (s) cm⁻¹ and v(O=Re=O) at **786 (s)** cm-1) is in excellent agreement with the literature data.³²

⁽³⁰⁾ While the 1-electron oxidant $[Ph_3C]PF_6$ also generates the blue-green species, workup of the resulting solutions gave mainly decomposition products; therefore, this procedure did not provide a convenient route to solid $[{\sf Re}_2{\rm H}_4({\sf dppe})_3]{\rm pF}_6$.

⁽³¹⁾ Anderson, **L. B.;** Bakir, M.; Walton, R. A. Polyhedron **1987,** 6, **1483.**

⁽³²⁾ Freni, M.; Giusto, D.; Romiti, P. *Gazz. Chim. Iral.* **1967, 97, 833.**

Figure 2. ORTEP view of the rhenium-containing cation of **1** with the phenyl rings omitted. The thermal ellipsoids are drawn at the **50%** probability level. The positions of the bridging and terminal hydride ligands were not determined.

Figure 3. ORTEP view of the rhenium-containing cation of 2. The thermal ellipsoids are drawn at the **50%** probability level except for the carbon atoms of the phenyl rings, which are circles of arbitrary radii.

The mixed PMe₃-dppe and PMe₃-dppm species $Re₂H₄$ - $(PMe₃)₄(dppe)$ and $[Re₂H₅(PMe₃)₄(LL)]⁺ (LL = dppe, dppm)$ were studied in much less detail than the analogous compounds $Re₂H₄(dppe)₂(LL)$ and the salts of the $[Re₂H₅(dppe)₂(LL)]⁺$ cations $(LL = dppe, dppm)$. In particular, temperature-range NMR spectral studies were not carried out. The 31P{1HJ NMR spectrum of a freshly prepared solution of $Re₂H₄(PMe₃)₄(dppe)$ in C₆D₆ displays resonances in a 2:1:3 intensity ratio at δ +69.6, -29.3, and -33.1, which correspond to the phosphorus atoms of a chelating dppe³¹ ligand and two inequivalent sets of PMe₃ ligands. For saltsof the **[Re2H~(PMe3)4(dppe)]+cation,** a similar assignment can be made for the phosphorus resonances at **6** +64.5,-3 1 .S,and-37.7 (intensityratio2:3: 1) althoughthechemical shifts of the resonances associated with the inequivalent sets of PMe₃ ligands are now reversed. For $[Re₂H₅(PMe₃)₄(dppm)]PF₆$ a resonance at $\delta + 10.5$ in the ³¹P{¹H} NMR spectrum is assigned to a bridging dppm ligand,²⁹ while that at δ -21.8 is attributed to four equivalent $PMe₃$ ligands. The ${}^{1}H$ NMR spectra of these three PMe3-containing complexes each consist of a single broad resonance displaying no resolvable P-H coupling (Table VIII).

(b) Reactions of $\mathbf{Re}_2\mathbf{H}_8(\mu\text{-dmpm})_2$ **with dmpm. We examined** initially the reactions between $\text{Re}_2H_8(\mu\text{-dppm})_2^{\text{-}7}$ and dppm with hot benzene as the reaction solvent but found that a mixture resulted which contained at least three hydride species. The components of this mixture were not easily separated, and none appeared to be $Re₂H₄(dppm)₃$, on the basis of an analysis of the NMR spectra. Accordingly, we turned our attention to the reactions of $\text{Re}_2\text{H}_8(\text{dmpm})_2$ with dmpm, but first needed to design a method for preparing the octahydride starting material. We

have previously^{6,7} developed a general synthetic route to complexes of the type $Re₂H₈(PR₃)₄$ (PR₃ represents a monodentate or onehalf bidentate phosphine) that involves the reaction of the corresponding tetrachloride complexes $Re_2Cl_4(PR_3)_4$ with $LiAlH_4$ in glyme (or THF) at room temperature. However, the compounds $Re_2X_4(\mu\text{-dmpm})_2$ (X = Cl or Br) cannot be prepared by the usual synthetic methods,^{29,33} since the much more stable trisdmpm complexes $\text{Re}_2 X_4(\mu\text{-}d_{\text{m}})$ are always obtained. However, we have recently prepared²³ the bis-dmpm complex $\text{Re}_2(\mu O_2CCH_3)Cl_4(\mu$ -dmpm)₂, and this compound proved to be a suitable starting material for the synthesis of the dirhenium **oc**tahydride $Re₂H₈(dmpm)₂$. Its reaction with LiAlH₄ and subsequent hydrolysis of the reaction mixture with $THF/H₂O$ affords the red-brown octahydride (34% yield).

The physical properties of $Re₂H₈(dmpm)₂$ are similar to those of the other known dirhenium octahydrides. Cyclic voltammetric measurements on a 0.1 M TBAH/CH₂Cl₂ solution of this polyhydride shows that it displays a reversible process, which corresponds to an oxidation at $E_{1/2}(\text{ox}) = -0.30 \text{ V}$, and an irreversible oxidation at $E_{p,a}$ = +0.35 V vs Ag/AgCl. These data compare with the values measured for other octahydride complexes of the type $\text{Re}_2\text{H}_8(\text{PR}_3)_4$, which range from $E_{1/2}(\text{ox}) = -0.63$ V and $E_{p,a}$ = +0.34 V when PR₃ = PEt₃ to $E_{1/2}$ (ox) = -0.02 V and $E_{p,a}$ = +0.81 V for PR₃ = ¹/₂ dppe.⁷ As expected, the reversible oxidation of $Re₂H₈(dmpm)₂$ occurs at a potential more negative than that of $Re₂H₈(dppm)₂$ ($E_{1/2} = -0.11$ V) as a consequence of the increased Lewis basicity of the dmpm ligand. The Nujol mull IR spectrum of this polyhydride complex displays two strong ν (Re-H) modes at 1984 and 1954 cm⁻¹, with a shoulder at 2018 $cm⁻¹$.

A solution of $Re₂H₈(dmpm)₂$ in $C₆D₆$ gives a simple ¹H NMR spectrum: a singlet at δ +1.64 and a pair of overlapping multiplets at δ +1.72 and +1.77 which correspond to the methyl and methylene protons of the dmpm ligand, respectively. The remaining hydride resonance at δ -6.61 is a binomial pentet (² J_{PH} = 11.2 Hz) due to coupling to four equivalent phosphorus atoms. This solution gives a singlet in the ³¹P{¹H} NMR spectrum at δ +6.2. The phosphorus resonance of $\text{Re}_2\text{H}_8(\text{dmpm})_2$ is resolved into a nine-line pattern in the selective 2DJ NMR spectrum, and this confirms the presence of eight hydride ligands. The NMR spectral properties of $\text{Re}_2H_8(dmpm)_2$ accord with fluxional behavior in solution, as has been found to be the case for $Re₂H₈(dppm)₂$, although in the solid state the latter complex has the structure $\text{Re}_2(\mu-\text{H})_2\text{H}_6(\mu-\text{dppm})_2$.

It is not surprising that $Re₂H₈(dmpm)₂$, like its dppe analogue, reacts with excess phosphine ligand. However, the major product is the extraordinarily stable $[Re₂H₅(dmpm)₃]$ ⁺ cation rather than $Re₂H₄(dmpm)₃$; we have been unable to isolate the tetrahydride because of the facility with which it is protonated. The preparation of $[Re₂H₅(dmpm)₃]$ ⁺ is most conveniently accomplished by the reaction of $Re₂H₈(dmpm)₂$ with dmpm in the presence of $HBF₄·Et₂O$ (eq 4) or, alternatively, through a one-pot synthesis involving the reaction of $Re₂Cl₄(dmpm)₃$ with LiAlH₄ in THF followed by hydrolysis with aqueous THF and subsequent reaction

with KPF₆ (eq 5). Use of NaBPh₄ in place of KPF₆ gives
\n
$$
Re_2H_8(dmpm)_2 + dmpm + HBF_4 \rightarrow [Re_2H_5(dmpm)_3]BF_4 + 2H_2
$$
 (4)

Re₂Cl₄(dmpm)₃ + LiAlH₄
$$
\rightarrow
$$
 [Re₂H₅(dmpm)₃]PF₆
(5)

 $[Re₂H₅(dmpm)₃]BPh₄$. Prior to the addition of KPF₆ in eq 5, the $[Re₂H₅(dmpm)₃]$ ⁺ cation is probably stabilized by some sort of aiuminate anion (as yet unidentified); it shows intense broad

⁽³³⁾ Ebncr, J. **R.;** Walton, **R. A.** *Inorg. Chcm.* **1975,** *14,* **1987.**

 $\nu(OH)$ bands at 3362 and 3266 (sh) cm⁻¹ and $\delta(OH)$ at 1638 cm-I in the IR spectrum. These bands disappear upon formation of the PF_6 - salt. The ¹H and ³¹P NMR spectral properties of the cation pre and post PF_6 ⁻ exchange are identical. The reaction in eq 5 is readily adapted to the preparation of [Re₂D₅- $(dmpm)$ ₃]PF₆.

The electrochemical and spectroscopic properties of $[Re₂H₅ (dmpm)_3]BF_4$ are identical to those of the PF_6^- salt except for a u(B-F) mode at 1060 **(s)** cm-1 in the IR spectrum of the former complex. The IR spectra of both salts show several fairly intense ν (Re-H) modes between 2100 and 1800 cm⁻¹ (Table VIII). These are absent in the spectrum of $[Re_2D_5(dmpm)_3]PF_6$, which shows ν (Re-D) bands overlapping the δ (C-H) modes of the dmpm ligands between 1500 and 1300 cm-I. The more important properties of $[Re₂H₅(dmpm)₃]PF₆$ are summarized in Table VIII. A solution of this salt in acetone gave a conductivity characteristic of a 1:1 electrolyte in this solvent $(\Lambda_m = 105 \Omega^{-1} \text{ cm}^2 \text{ mol}^{-1})$.

The electrochemical properties of $[Re₂H₅(dmpm)₃]PF₆$, studied by cyclic voltammetry, are unlike those of other dirhenium pentahydrides studied previously^{12b,14} as well as the complexes $(PMe₃)₄(LL)$]PF₆ (LL = dppe, dppm) (see Table VIII). These have much more accessible oxidations than does $[Re₂H₅ (dmpm)_3$]PF₆ (compare, for example, the data in Table VIII). A solution of $[Re₂H₅(dmpm)₃]PF₆$ in 0.1 M TBAH/CH₂Cl₂ displays two irreversible oxidations at $E_{p,a}$ = +0.62 and +0.94 V in its cyclic voltammogram. The first oxidation is much more positive than the $E_{1/2}$ (ox) value for $[Re₂H₅(dppe)₃]BF₄$. At first sight, this is contrary to what one would expect, since increased phosphine basicity (dmpm > dppe) should lead to a negative shift in this potential. Accordingly, this result is in accord with a major structural difference between $[Re₂H₅(dppe)₃]$ ⁺ and $[Re₂H₅(dmpm)₃]$ ⁺, as we have found to be the case. $[Re₂H₅(dppe)₃]BF₄, [Re₂H₅(dppe)₂(dppm)]BF₄, and [Re₂H₅ -$

The complex $[Re_2H_5(dmpm)_3]PF_6$ has an uncomplicated ¹H NMR spectrum; the methyl resonance appears as a singlet at δ $+1.82$, while the broad methylene resonance at $\delta + 2.98$ resembles a poorly resolved triplet. A binomial septet occurs at δ -8.42 $(2J_{\text{PH}} = 9.2 \text{ Hz})$ due to the hydrides being coupled to six equivalent phosphorus atoms. The simplicity of the spectrum reflects the occurrence of a fluxional process that renders the hydride ligands equivalent on the NMR time scale. This hydride resonance is observed to broaden upon lowering the temperature from $+20$ to -80 °C but is otherwise unchanged, and we were unable to obtain the spectrum of the limiting static structure. Likewise, the P-CH₃ resonance broadened slightly but otherwise remained unchanged as the temperature was lowered. A quite remarkable property of the $[Re₂H₅(dmpm)₃]$ ⁺ cation is its solubility in water; such solutions are stable in air for extended periods. A very simple ¹H NMR spectrum is obtained in D_2O . Two singlets are located at δ +3.0 (br) and +1.7 which are assigned to the methylene and methyl protons of the dmpm ligands, respectively. The hydride resonance appears as a septet at -8.3 ($^2J_{\text{PH}} = 9.0$ Hz). The intensity of this signal slowly decreases as the hydride ligands exchange with deuterium of the solvent. The ³¹P{¹H} spectrum in CD₂Cl₂ displays a singlet at δ -28.7 corresponding to the dmpm phosphorus atoms. Also, a binomial septet is observed at δ - 143.4 for the PF₆⁻ anion. A selective 2DJ ³¹P NMR experiment was used to confirm the number of hydride ligands present; the phosphorus resonance is split into six peaks $(^{2}J_{\text{PH}} = 9.2 \text{ Hz})$.

The single-crystal X-ray structure of $[Re_2H_5(dmpm)_3]PF_6$ showed the solid-state structure of the cation to be $[Re_2(\mu-H)H_4(\mu-H)]$ d_{mpm})⁺ (Figure 4). The key structural parameters of the cation are listed in Table VII.

Discussion

(a) Complexes Containing 1,2-Bis(diphenylpbosphiw)etbane and Bis(dipheny1phosphino)methane. The isolation of the pairs $Re₂H₄(dppe)₂(LL)$ and $[Re₂H₃(dppe)₂(LL)]BF₄ (LL = dppe,$

Figure **4. ORTEP** view of the rhenium-containing cation of 3 with the hydrogen atoms of the dmpm ligands omitted. The thermal ellipsoids are drawn at the **50%** probability level except for the hydride ligands, which are circles of arbitrary radii.

dppm), along with $Re₂H₄(PMe₃)₄(dppe)$ and $[Re₂H₅ (PMe₃)₄(dppe)]X (X = BF₄, PF₆)$, provides the only examples, other than $\text{Re}_2\text{H}_4(\text{PMe}_2\text{Ph})_4[\text{P}(\text{OCH}_2)_3\text{CEt}]_2$ and Re_2H_5 - $(PMe₂Ph)₄[P(OCH₂)₃CEt]₂BE₄²⁰$ of dirhenium tetrahydride/ pentahydride conjugate pairs. The system studied by Green et al.20 differs from ours in containing only monodentate phosphine/ phosphite ligands. This pair of complexes²⁰ contains three bridging and one or two terminal hydride ligands, which is not always the case with the complexes prepared by us. The complex $Re₂H₄(dppe)₃$ has ¹H and ³¹P{¹H} NMR spectra that accord with the presence of two bridging and two terminal hydride ligands and with three pairs of inequivalent phosphorus atoms in chelating dppe ligands. These characteristics are best accommodated in structure I. In contrast to this situation, the NMR spectral

properties of $\text{Re}_2H_4(\text{dppe})_2(\text{dppm})$ support the presence of three bridging and one terminal hydride ligands and two chelating dppe and one bridging dppm ligands (structure 11). Both complexes display a reversible one-electron oxidation in their cyclic voltammograms at very negative potentials $(E_{1/2}(\text{ox})$ = ca. *-0.55* V). Not only does this reflect their sensitivity to oxidation, but since it is also an indication of the electron-rich character of the low valent metal centers, it also accords with their strong basicity and ease of protonation (vide infra).

In earlier studies^{14,15} of the reaction of PMe₃ with $Re₂H₈$ - $(PMe₃)₄$, it was found that the reaction course was solvent dependent; in benzene the reaction affords $Re₂H₆(PMe₃)₅$ whereas the $[Re₂H₅(PMe₃)₆]+$ cation is formed in methanol, a protonating solvent. The highly basic, and presumably very unstable, tetrahydride $Re₂H₄(PMe₃)₆$ could not be obtained. In contrast, $Re₂H₈(dppe)₂$ reacts with dppe to give $Re₂H₄(dppe)₃$ when either benzene or methanol is used as the reaction solvent.

The protonation of $\text{Re}_2H_4(\text{dppe})$, gives the pentahydride dirhenium cation whose distribution of hydride ligands is symmetrical but whose formation is accompanied by a switch of one of the chelating dppe ligands from a chelating to an intramolecular bridging mode. This is not only supported by NMR spectroscopy but also confirmed by an X-ray crystal structure of the $[Re₂H₅(dppe)₃]$ ⁺ cation in its perrhenate salt (Figure 2). This complex was obtained, along with $[ReO₂(dppe)₂]ReO₄$, during an unsuccessful attempt to grow crystals of $Re₂H₈(dppe)₂$. Apparently, a portion of $\text{Re}_2H_8(\text{dppe})_2$ decomposed with release of dppe, which then reacted with some of the remaining $Re₂H₈(dppe)₂$ to produce $Re₂H₄(dppe)₃$, which in turn became protonated in the THF/methanol solvent system.²⁷ The formation of the $ReO₄$ - counterion is attributed to the slow diffusion of some oxygen into the system during the prolonged period over which these reactions and subsequent crystal growth occurred. However, theoxygen-containing THF and methanol solvents could also play a role in the oxygenation reactions. The presence of $[ReO₂(dppe)₂]ReO₄$ is most likely the result of a separate decomposition pathway, since the $[Re₂H₅(dppe)₃]$ ⁺ cation seems to be fairly stable to low levels of *02* and does not convert to $[ReO₂(dppe)₂]$ ⁺. The complex $[Re₂H₅(dppe)₃]ReO₄$ is isostructural with $[Re₂H₅(dppe)₃]BF₄$, and the dirhenium cation has been shown to have the structure $[(\text{dppe})HRe(\mu-H)_3(\mu-\text{dppe})ReH (dppe)$ ⁺. While we did not locate the hydride ligands in this structure determination, the presence of three bridging hydride ligands and one terminal hydride per rhenium atom is compatible with the geometry of the Re_2P_6 skeleton and the ¹HNMR spectral results (Table VI11 and Figure 1). In the solid state this structure is rather unsymmetrical, since the two chelate rings exhibit different conformations. The ring formed at Re(2) has an "envelope"-type puckering of a kind encountered previously with dimetal complexes that contain dppe and related bidentate phosphine ligands.34 The P-C-C-Punit is almost planar (the torsional angle $P(22) - C(223) - C(233) - P(23)$ is ca. 5 (2)^o). The ring at $Re(1)$ is much more puckered, as shown by the $P(13)-C(133)$ -C(123)-P(12) torsional angle of ca. 49 (1) $^{\circ}$. The unsymmetric nature of the Re_2P_6 core is also reflected in the disparity in the P-Re-Re-P torsional angles, which in the case of $P(11)$ -Re(1)- $Re(2) - P(21)$, $P(12) - Re(1) - Re(2) - P(23)$, and $P(13) - Re(1) - P(21)$ $Re(2) - P(22)$ are 8.0 (1), 47.9 (2), and 50.9 (2)°, respectively. The presence of three separate phosphorus signals in the $31P\{^1H\}$ NMR spectrum at -40 °C is also consistent with this lowsymmetry structure. The Re-Re distance of 2.576 (1) **A** in the $[Re₂H₅(dppe)₃]$ ⁺ cation is a little shorter than those distances reported for the analogous phosphite ${Re₂H₅(PMe₂Ph)₄$ - $[P(OCH₂)₃CEt]₂$ ⁺ (2.605 (2) Å)²⁰ and isocyanide $[Re₂H₅$ -(PPh3)4(CN+Bu)z]+ (2.604 (1) **A)I6** complexes but is characteristic of hydrido-bridged dirhenium complexes that contain three or four bridging hydride ligands.^{2a,9,10,15,16,20,35} The average Re-P distance of 2.359 (3) **A** is also consistent with those found in these related structures.^{16,20} There are no obvious differences between the Re-P distances associated with the three chemically different dppe ligands.

The complex $[ReO_2(dppe)_2]ReO_4$ (2) has a structure similar to those of other complexes that contain the trans $[O=Re=O]^+$ moiety³⁶ and merits little further discussion. The Re-O distances of 1.78 1 (6) *8,* are typical for a trans-dioxo species and agree well with the value of 1.79 (2) \AA reported for $[ReO_2(PMe_3)_4]ReO_4.^{37}$ The Re-P distances (2.497 (3) and 2.485 (3) **A)** are also in **good** agreement with those in $[ReO_2(PMe_3)_4]ReO_4$ (2.485 (8) Å).³⁷

The protonation of $Re_2H_4(dppe)_2(dppm)$ to give $[Re_2H_5-dq]$ $(dppe)₂(dppm)] BF₄ differs from the corresponding protonation$ of $Re₂H₄(dppe)₃$ in that the former reaction does not appear to be accompanied by any change in the bonding modes of the phosphine ligands (as measured by $31P\{^1H\}NMR$ spectroscopy); i.e., the Re_2P_6 skeleton remains as $(dppe)Re(\mu-dppm)Re(dppe)$. While the IH NMR spectrum of this complex accords with a fluxional process that renders the hydride ligands equivalent at room temperature, the similarity of the cyclic voltammetric properties of this complex to those of $[Re₂H₅(dppe)₃]BF₄$ (Table VIII) and

other pentahydridodirhenium cations, $12b,14$ which possess limiting static structures with three bridging and two terminal hydride ligands, implies that this mixed dppe-dppm complex cation has the structure $[(\text{dppe})HRe(\mu-H)_3(\mu\text{-dppm})ReH(\text{dppe})]^+.$

In accord with the structure change that accompanies the protonation of $\text{Re}_2\text{H}_4(\text{dppe})_3$, we note that the pentahydride cation cannot be deprotonated by DBU, whereas $[Re₂H₅(dppe)₂$ - $(dppm)$] BF₄ can be reconverted to $Re₂H₄(dppe)₂(dppm)$ by this reagent. Reversible **protonation/deprotonation** reactions have been observed previously for the dinuclear rhenium polyhydrides $Re₂H₈(PR₃)₄ (PR₃ = PPh₃,¹³ PMe₃¹⁴). However, the deproto$ nation of $[Re₂H₉(PR₃)₄]⁺$ is accessible through use of the weaker base NEt₃.^{13,14} The fact that a stronger base is required for the deprotonation of $[Re₂H₅(dppe)₂(dppm)]BF₄ gives an indication$ of the greater basicity of the tetrahydride complex $Re₂H₄$ - $(dppe)_{2}(dppm)$ compared to $Re₂H₈(PR₃)_{4}$.

The conversion of one of the chelating dppe ligands in $Re₂H₄(dppe)₃$ to an *intramolecular* bridging mode is unusual but is not without precedent. Thus, the important isomerization process that leads to the conversion of multiply bonded complexes of the type α -M₂X₄(dppe)₂ (M = Mo, W; X = Cl, Br) to β - $M_2X_4(dppe)_2$ involves a switch in the bonding mode of *both* dppe ligands from chelating to bridging, with an associated change in rotational geometry about the M-M bond from eclipsed to staggered.^{38,39}

While ³¹P{¹H} NMR spectroscopy showed that the product from the reaction between $Re₂H₈(dppe)₂$ and PMe₃ is impure, the isolated solid probably contains $Re₂H₄(dppe)₂(PMe₃)₂$ as a major component. This is supported by its cyclic voltammogram (recorded on a solution in 0.1 M TBAH/CH₂Cl₂) which shows $E_{1/2}$ (ox) = -0.69 V vs Ag/AgCl, a value intermediate between the corresponding $E_{1/2}(\text{ox})$ values for $\text{Re}_2H_4(\text{dppe})_3$ and $Re₂H₄(PMe₃)₄(dppe)$, which are -0.54 and -0.81 V, respectively (Table VIII). The latter compound, which is prepared by the reaction of $Re₂H₈(PMe₃)₄$ with dppe, is the closest we have yet to come to preparing $Re_2H_4(PMe_3)_6$. On the basis of the $E_{1/2}(\text{ox})$ values for $Re₂H₆(PMe₃)₅$ and $Re₂H₄(PMe₃)₄(dppe)$ of -0.79¹⁵ and -0.81 V (Table VIII), we would expect $Re₂H₄(PMe₃)₆$ to be even more susceptible to oxidation and therefore exceedingly difficult to isolate. The much greater stability of $[Re₂H₅(PMe₃)₆]$ ⁺ is thus readily understandable.^{14,15}

The ease of protonating $Re₂H₄(PMe₃)₄(dppe)$ to give $[Re₂H₅ (PMe₃)₄(dppe)_{BF₄}$ is also in accord with these results, as is the isolation of $[Re_2H_5(PMe_3)_4(LL)]PF_6(LL = dppe, dppm)$ from the reactions of $Re₂H₈(PMe₃)₄$ with a mixture of the ligand LL and KPF_6 in methanol. The latter reactions almost certainly involve the protonation of neutral dirhenium polyhydride intermediates by the methanol solvent;15 detailed mechanistic studies are not planned.

The room-temperature ¹H NMR spectra of $Re₂H₄$ - $(PMe₃)₄(dppe)$ and $[Re₂H₅(PMe₃)₄(LL)]PF₆$ show broad singlets for the $Re-H$ resonances, which indicates that the hydride ligands are rendered equivalent by a fluxional process. A relatively rigid Re_2P_6 skeleton is in accord with the ³¹P{¹H} NMR spectra, which are consistent with the ligand disposition (dppe)- $(Me_3P)ReRe(PMe_3)$ for both $Re_2H_4(PMe_3)$ (dppe) and $[Re_2H_5 (PMe₃)₄(dppe)⁺$ and the more symmetrical structure $(Me₃P)₂$ - $Re(\mu$ -dppm) $Re(PMe_3)_2$ for $[Re_2H_5(PMe_3)_4(dppm)]^+$.

(b) Complexes Containing Bis(dimethy1phosphino)methsne.

⁽³⁴⁾ See, for example: Bakir, M.; Cotton, F. A.; Falvello, L. R.; Vidyasagar, (35) Abrahams, S. C.; Ginsberg, A. P.; Koetzle, T. F.; Marsh, P.; Sprinkle, K.; Walton, R. A. *Inorg. Chem.* **1988, 27, 2460.**

C. R. *Inorg. Chem.* **1986, 25, 2500.**

⁽³⁶⁾ Conner, K. A.; Walton, R. A. *Comprehensive Coordination Chemistry;* **Pergamon: Oxford, England, 1987; Chapter 43, pp 185-187.**

⁽³⁷⁾ Edwards, P. G.; Skapski, A. C.; Slawin, A. M. Z.; Wilkinson, G. *Polyhedron* **1984, 3, 1083.**

⁽³⁸⁾ (a) Cotton, F. A.; Walton, R. A. *Multiple Bonds Between Metal Atoms;* **Wiley: New York, 1982. (b) Cotton, F. A.; Walton, R. A.** *Strucr. Bonding (Berlin)* **1985, 62, 1.**

⁽³⁹⁾ (a) Best, S. A.;Smith, T. J.; Walton, R. A. *Inorg. Chem.* **1978,17,99. (b) Schrock, R. R.; Sturgeoff, L. G.; Sharp, P. R.** *Inorg. Chem.* **1983,** 22, 2801. (c) Agaskar, P. A.; Cotton, F. A. *Inorg. Chem.* 1984, 23,
3383. (d) Cole, N. F.; Derringer, D. R.; Fiore, E. A.; Knoechel, D. J.;
Schmitt, R. K.; Smith, T. J. *Inorg. Chem.* 1985, 24, 1978. (e) Agaskar,
P. A.; C **T. J.** *Inorg. Chem.* **1985,** *24,* **2786.** *(0* **Agaskar, P. A.; Cotton, F. A.** *Inorg. Chem.* **1986, 25, 15.**

The cationic complex $[Re₂H₅(dmpm)₃]$ ⁺ can be isolated as its BF_4^- and PF_6^- salts by two separate routes (eqs 4 and 5). Its properties show that it is different structurally from all other known pentahydridodirhenium cations in both solution and the solid state. The cyclic voltammogram of a solution of $[Re₂H₅] (dmpm)_3$]PF₆ shows two irreversible oxidations $(E_{p,a} = +0.62$ and $+0.94$ V), whereas all other species of the type $[Re₂H₅ (PR₃)₆$ ⁺ possess two oxidations that are separated by ca. 0.8 V, the first of which is reversible with $E_{1/2}(\text{ox})$ in the range -0.11 to +0.36 V, the actual value being dependent upon the nature of the ancillary ligands (see refs 12b and 14 and Table VIII).

The simplicity of the NMR spectra down to **-80** "C signifies the existence of a fluxional process (or processes) that renders the hydride ligands and phosphorus atoms equivalent. A comparison of the 31P{1HJ NMR spectra of the pair of complexes $Re₂H₈(PMe₃)₄(\delta-25.9)⁷$ and $[Re₂H₅(PMe₃)₆] + (\delta-31.3),¹⁴$ which like their dmpm analogues are also fluxional in solution, shows that the chemical shift difference is quite small (ca. 5.4 ppm) whereas between $\text{Re}_2\text{H}_8(\text{dmpm})_2(\delta+6.2)$ and $[\text{Re}_2\text{H}_5(\text{dmpm})_3]^+$ $(\delta -28.7)$ the corresponding upfield shift is ca. 35 ppm. Along with the electrochemical results, this implies that $[Re₂H₅ (dmpm)₃$ ⁺ may be structurally quite different from the other pentahydridodirhenium cations. This is confirmed by the X-ray crystal structure of $[Re₂H₅(dmpm)₃]PF₆.$

The structure of the $[Re₂H₅(dmpm)₃]$ ⁺ cation, which is shown in Figure 4, can be represented as $[Re_2(\mu-H)H_4(\mu-dmpm)_3]^+$. While this species possesses no crystallographically imposed symmetry, it approximates to C_{2v} symmetry with the mirror plane encompassing the carbon atoms of the $CH₂$ groups of the three dmpm ligands and bisecting the Re-Revector. The Re_2P_6 skeleton is essentially eclipsed with P-Re-Re-P torsional angles close to zero. This is in contrast to the chloride complex $\text{Re}_2\text{Cl}_4(\mu\text{-dmpm})_3$, which also contains three bridging dmpm ligands, where the torsional angles are ca. $30^{\circ}.^{22}$ The most remarkable feature in this hydride structure is the very long $\text{Re}\cdots\text{Re}$ distance of 3.5150 (4) A, which clearly accords with the absence of any direct Re-Re bonding. We can view the structure as arising formally from the protonation of the neutral species $\text{Re}_2\text{H}_4(\text{dmpm})_3$, in which the individual Re atoms have 15-electron counts, such that a 3-center, 2-electron Re-H-Re bonding interaction gives rise to a diamagnetic ground state. This structure differs from those of all other $[Re₂H₅]$ ⁺ species that have been structurally characterized, including $[Re₂H₅(dppe)₃]+$,^{16,20,21a} in which there is a $[HRe(\mu-H)_3ReH]$ unit and a very short Re-Re distance (2.58-2.60 A). This structure of $[Re₂H₅(dmpm)₃]$ ⁺ may represent one structural extreme in the series of terminal/bridging Re-H bond **forming/breakingprocesses** that presumably account for thefluxionality of this complex in solution.

The two Re-P distances which are trans to terminal Re-H bonds are slightly longer (average 2.406 [2] **A)** than the set that are essentially trans to one another (average 2.370 [9] A). The terminal Re-H bond lengths (1.6-1.8 (1) **A)** are normal for **M-**H distances determined by X-ray crystallography;⁴⁰ the H--H distances are long (ca. 1.7 **A)** and support this being a classical hydride structure. The apparent disparity in the measured Re-H(B) distances (1.53 (7) and 2.06 (7) A), while greater than 3σ , is not considered to be significant in view of the difficulty of determining H atom positions in the presence of heavy metals by X-ray diffraction. However, if this difference in distances was real, it could be considered as evidence for a structure in which the two Re atoms had different electron counts, i.e., 14-electron and 16-electron. In this event, the species would show some resemblance to the unsymmetrical complex $(Me₂NH)(CO)₄Re(\mu-$ H)Re(C0)4Cl, which is formally composed of 18-electron and 16-electron fragments. 41

The structural characterization of dirhenium polyhydrides that contain three or four bridging hydride ligands has revealed that in all cases the Re-Re distance is very short (2.51-2.61 **A).2a,9,10,16,20,21a,35** This observation has led to the conclusion that some degree of multiple metal-metal bonding is present, rep resented in terms of direct Re-Re bonding and/or 3-center, 2 electron Re-H-Re bonds.^{42,43} An important exception is the complex $\text{Re}_2(\mu\text{-}H)_2\text{H}_6(\mu\text{-}dppm)_2$ (dppm = $\text{Ph}_2\text{PCH}_2\text{PPh}_2$), which contains only two bridging hydride ligands and possesses a much longer Re-Re bond distance of 2.9335 (9) Å. The $[Re_2(\mu H/H_4(\mu$ -dmpm)₃]⁺ cation takes this trend to its extreme, namely, no direct Re-Re interaction whatsoever and metal centers that are electronically unsaturated. This is an unusual result for a low-valent metal that normally show a propensity to form strong metal-metal interactions.38 In spite of its electronic unsaturation, this complex has the remarkable property of being stable in air and water. However, we do find⁴⁴ that under thermal conditions it reacts with the π -acceptor CO and isocyanide ligands to give lower valent dirhenium complexes in which the $[Re_2(\mu H$)(μ -dmpm)₃] unit is retained. These studies will be described in a separate report.

Acknowledgment. Support from the National Science Foundation, through Grant Nos. CHE88-07444 and CHE91-07578 to R.A.W. and Grant No. CHE86-15556 for the purchase of the microVAX I1 computer and diffractometer, is gratefully acknowledged. We also acknowledge the National Institutes of Health (Grant No. RR-01077) and the National Science Foundation (Grant No. 87 14258) for funds to purchase the NMR spectrometers.

Supplementary Material Available: Tables giving full details of the crystal data and data collection parameters (Tables S1-S3), atomic positional parameters (Tables **S4-S7),** anisotropic thermal parameters (Tables S8-S10), and complete bond distances (Tables S11-S13) and bond angles (Tables **S14-S** 16) for **1-3** and figures showing the structures and atomic numbering schemes for **1** and **2** (Figures S1 and **S2) (41** pages). Ordering information is given **on** any current masthead page.

- **(40)** Cotton, F. A.; Luck, R. L. *J. Am. Chem. Soc.* **1989,** 111, **5757.**
- **(41)** Adams, R. D.; Kuhns, J. D. Polyhedron **1988, 7, 2543.**
- **(42)** Dedieu, A.; Albright, T. A.; Hoffmann, *R. J. Am. Chem. Soc.* **1979,** *101,* **3141.**
- **(43)** Dahl, L. F. *Ann. N.Y. Acad. Sci.* **1983,** *415,* 1.
- **(44)** Meyer, K. E.; Fanwick, P. E.; Walton, **R.** A. Unpublished results.